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Abstract.  This paper describes new models and mechanisms for ontology-enabled traceability 
where design concepts are inserted between the already connected requirements and engineering 
objects Looking ahead, we envision that ontology-enabled traceability will play an important role 
in the development of network-enabled platforms for analysis, design, and early validation and 
verification of information-age engineering systems. 

P roblem S tatement 
 

The post-event analysis of recent engineering system failures indicates that, often, the underlying 
cause of catastrophic and expensive failures is minor mistakes or omission in communication of 
design intent (e.g., errors in the use of engineering units; errors in the placement of electronic 
devices on a drawing; logic errors in the implementation of software). The importance of this 
problem stems from the wide array of engineering applications that have failed in this way. 
Examples include spacecraft, automated baggage handling systems at airports, and networked 
services in modern building environments (Jackson 2006; Jones 2004; Sawyer 1999). 

The difficulty in finding a good solution to this problem is complicated by industrial-age systems 
being replaced by information-age systems. As pointed out by Whitney (Whitney 1996), 
industrial-age systems tend to be dominated by hardware and continuous behavior that can be 
described by differential equations. Designers can use safety factors to deal with uncertainties in 
system properties, behavior and design. Information-age systems on the other hand tend to be 
dominated by combinations of hardware, software and communications, which together are 
required to provide new types of time-critical services, superior levels of performance, and work 
correctly with no errors. There are a number of reasons why satisfaction of these goals can be 
particularly difficult. First, when new technologies are weaved together to achieve new types of 
functionality, systems can fail in new and unprecedented ways. In the late 1990s, for example, 
NASA certainly did not anticipate that a miscommunication of engineering units would lead to one 
of their spacecraft crashing into the surface of Mars. Second, correct functionality for software and 
communications systems is defined by logic (not differential equations). Not only does the concept 
of safety factors not apply, as observed in a number of engineering system failures, a small fault in 
the software implementation can trigger catastrophic system level failures. While it is tempting to 
assume these errors are caused by bugs in the software, recent studies (Jackson 2006) indicate that 



  

almost all grave software problems can be traced back to conceptual mistakes made before the 
programming even started. 

Systems Engineering Community Response. In an effort to improve the accuracy and 
effectiveness of communication among engineers in the development of real-time systems, the 
systems engineering community has developed SysML, the Unified Modeling Language (UML) 
extended for Systems Engineers (Sysml 2003, UML 2003). UML has already found great success 
in the software engineering community. By introducing a variety of new diagram types to SysML, 
the hope is that similar success will occur in systems engineering. We believe, however, the name 
Unified Modeling Language promises more than it can ever deliver. While modest extensions to 
UML will be useful for documentation, informal analysis, and communication of ideas among 
systems engineers, both UML and SysML lack the syntax/semantics needed for rigorous analysis 
and formal verification of system compliance associated with temporal and spatial analysis of 
physical systems. While diagrams may represent different views on a system, there is no 
mechanism to define the interconnections or dependencies among the diagrams describing a 
system. In other words, there are too many places to capture information (in the large number of 
available diagrams), and too few ways to show relationships between the diagrams (Berkenkotter 
2003). Moreover, recent history tells us that the benefits of UML are unlikely to be appreciated by 
upper-level management and discipline-specific engineers -- instead, issues need to be explained 
in terms with which they are already familiar (Fogarty and Austin 2009). 

These gaps will not be bridged unless a method is found to use UML (and its extensions) in concert 
with discipline-specific models and notations (e.g., visualization of requirements; block diagrams; 
two- and three-dimensional engineering schematics). Therefore, the key tenet of the proposed 
work is that end-to-end development of engineering systems will occur through multiple 
models of visualization networked together. Looking ahead, there will still be a need for 
development of web-centric, graphically driven, computational platforms dedicated to 
system-level planning, analysis, design and verification of complex multidisciplinary engineering 
systems. These environments will employ semantic descriptions of application domains, and use 
ontologies to enable validation of problem domains and communication (or mappings) among 
multiple disciplines. The abstraction of multiple disciplines to properly annotated information 
representations and reuse of previous work at all levels of development will be essential. 
Present-day systems engineering methodologies and tools are not designed to handle projects in 
this way. 

 

S tate-of-the-A rt R equirements  Modeling 
 
At the system level, designs are viewed as collections (e.g., networks and hiérarchies) of large, 
arbitrarily complex functional units that form the major components of a system. Designers need 
to identify components/objects, their attributes and methods, and interfaces and relationships to 
external entities. To maximize the quality of connunication in team-based development of 
projects, participants should be able to view design data/information in a manner with which they 
are familiar, and easily understand connectivity relations and transitions among viewpoints, and 
the rationale for establishing the connections in the first place. Unfortunately, state-of-the-art 
capability in requirements modeling and visualization fall short of this vision. 
 



 

  

 
Figure 1. Modeling Transitional Mappings Across Hierarchies in SLATE 

 

As a case in point, the IBM Teamcenter (SLATE) Requirements Tool is based upon very good 
data representations for traceability links (complying and defining links), and connecting 
cause-and-effect relationships among abstraction blocks (ABs) in multiple viewpoints (i.e., 
TRAMS == translational mappings). TRAMs work in terms of connecting source ABs to 
destination ABs, and source-to-destination and destination-to-source pathways. Figure 1 shows, 
for example, the use of TRAMs to link requirements, electrical, mechanical and software 
viewpoints. The underlying graphical support is weak in the sense that all design entities are 
simply referred to as abstraction blocks (ABs). Moreover, to date, no one has been able to figure 
out how to actually organize and visualize the subsystem viewpoints on a computer as illustrated 
in Figure 1. This leaves a non-systems engineer in the dark, providing little visual assistance in 
understanding how requirements influence design objects that they actually understand, and in 
understanding how elements in one domain of engineering are affected by concerns in a different 
engineering domain. To overcome these limitations we need a better representation of individual 
objects (requirements, abstraction blocks, and so forth) and the linkage of those entities to the 
overall architectural design. 

 

Proposed Approach to Traceability 
The upper half of Figure 2 shows a simplified representation for how requirements are connected 
to design elements in state-of-the-art traceability (i.e., traceability links connect requirements 
directly to design objects). State-of-the-art traceability mechanisms portray that ``this requirement 
is satisfied by that design object (or group of design objects)’’. Or alternatively, looking 
backwards, ``this design object is here because it will satisfy that design requirement.’’ 

 



  

 
 

Figure 2. Simplified View of State-of-the-Art Traceability and the Proposed Model 
 

The lower half of Figure 2 shows the proposed model that will be explored in this work. Instead of 
directly connecting requirements directly to design objects, a new node called ``Design Concept'' 
will be embedded in the traceability link. Assembly of traceability links will be conducted by 
asking ``what concept should be applied to satisfy this requirement?'' Solutions to this question 
establish links between requirements and design concepts. We assume that the design itself will 
correspond to the application of appropriate concepts. Thus, the links between design concepts and 
engineering objects represents an actual implementation of concepts. 

From a validation and verification viewpoint, the key advantage of the proposed model is that 
software for ``design rule checking'' can be embedded inside the design concepts module. Thus, 
rather than waiting until the design has been fully specified, this model has the potential for 
detecting rule violations at the earliest possible moment. Moreover, if mechanisms can be created 
to dynamically load design concept modules into computer-based design environments, then rule 
checking can proceed even if the designer is not an expert in a particular domain. 

From a modeling and visualization standpoint, this approach opens the door to improved methods 
for the visualization of requirements with respect to design objects. In an ideal setting, the latter 
should be visualized using a notation familiar to the engineer (e.g., a mechanical engineering 
drawing). 
 
 
Ontologies  and Ontology-E nabled C omputing 
 

An ontology is a set of knowledge terms, including the vocabulary, the semantic interconnections, 
and some simple rules of inference and logic for some particular topic ( (Gomez-Perez 2004, 
Hendler 2001, Staab 2000). Ontologies are needed to facilitate communication among people, 
among machines, and between humans and machines. Instead of creating a system through the 
integration of data, the proposed approach follows an approach of creating systems through the 
application and integration of concepts. 

System and sub-system evaluation will depend on both the concept and the data used in its 
implementation (e.g., an area constraint will depend on geometry). To ensure that system-level 
designs are faithful representations of both the stakeholder needs and the capabilities of the 
participating application domain(s), ontology models need to be accurate, complete, conflict free 



 

  

and minimal (i.e., no redundancy) (Shanks 2003). Accuracy means that models need to accurately 
represent the semantics of the participating application domains, as perceived by the project 
stakeholders. To reduce the likelihood of conflicts during model updates, models should not 
contain redundant semantics. The ontology community makes a distinction between ontologies 
that are taxonomies and those that model domains in depth, applying restrictions on domain 
semantics (Gomez-Perez 2004). So-called lightweight ontologies include concepts, concept 
taxonomies, relationships between concepts, and properties of the concepts. Heavyweight 
ontologies add axioms to lightweight ontologies -- axioms serve the purpose of adding clarity to 
the meaning of terms in the ontology. They can be modeled with first-order logic. Top-level 
ontologies describe general concepts  (e.g., space, connectivity, etc.). Domain ontologies describe 
a vocabulary related to a particular domain (e.g., building architecture, plumbing, etc.). Task 
ontologies describe a task or activity. Application ontologies describe concepts that depend on 
both a specific domain and task. These ontologies might represent user needs with respect to a 
specific application. Because a unified theory for system validation does not exist at this time, 
present-day procedures for design rule checking tend to focus on small snippets of the system 
model functionality, and are achieved in several ways: (1) consistency checking, (2) connectivity 
analysis, and (3) model analysis on a global basis, based upon graph-theoretic techniques. 

Ontology-Enabled Computing. To provide for a formal conceptualization within a particular 
domain, and for computers to share, exchange, and translate information within a domain of 
discourse, an ontology needs to accomplish three things (Liang 2004): (1) Provide a semantic 
representation of each entity and its relationships to other entities; (2) Provide constraints and rules 
that permit reasoning within the ontology; and (3) Describe behavior associated with stated or 
inferred facts. Items 1 and 2 cover the concepts and relations that are essential to describing a 
problem domain. Items 2 and 3 cover the axioms that are often associated with an ontology. 
Usually, axioms will be encoded in some form of first-order logic. 
 
Semantic Web. This project assumes that advances in ontology-enabled design and development 
will occur in parallel with advances in the Semantic Web. 
 
In his original vision for the World Wide Web, Tim Berners-Lee described two key objectives: (1) 
To make the Web a collaborative medium; and (2) To make the Web understandable and, thus, 
processable by machines. During the past decade the first part of this vision has come to pass -- 
today's Web provides a medium for presentation of data/content to humans. Machines are used 
primarily to retrieve and render information. Humans are expected to interpret and understand the 
meaning of the content. 
 
The Semantic Web (Berners-Lee 2001, Hendler 2001) aims to give information a well-defined 
meaning, thereby creating a pathway for machine-to-machine communication and automated 
services based on descriptions of semantics (Geroimenko 2003). Realization of this goal will 
require mechanisms (i.e., markup languages) that will enable the introduction, coordination, and 
sharing of the formal semantics of data, as well as an ability to reason and draw conclusions (i.e., 
inference) from semantic data obtained by following hyperlinks to definitions of problem domains 
(i.e., so-called ontologies). 
 
 



  

 
 

Figure 3. Technologies in the Sematic Web Layer Cake 
 
 
Figure 3 describes the infrastructure that will support this vision (Berners-Lee 2000). The 
Resource Description Framework (RDF) defines a standard for describing the relationships 
between objects and classes in a general but simple way. Class relationships and statements about 
a problem domain are expressed in DAML+OIL (DARPA Agent Markup Language) and more 
recently, the Web Ontology Language (OWL)  (Webont 2003). 
 
 
Representation of Ontologies with UML Class Diagrams. From a systems engineering 
perspective, the key advantage in modeling design concepts with Semantic Web languages such as 
RDF, DAML and OWL is that software tools have been developed for logical reasoning with 
relationships and rules implied by ontologies, and for evaluation of assertions. See Figure 5. 
Unfortunately, at this time RDF, DAML and OWL lack a standard representation for visualizing 
concepts expressed in these languages. 
 
A practical way of overcoming this shortcoming is to use UML class diagrams -- actually, graph 
structures of UML schema -- in lieu of a formal ontology. UML is well defined and has a 
community of millions of users. UML class diagrams can be used for representing concepts (and 
their attributes), and relations between concepts (e.g., knowledge reflecting performance, legal and 
economic restrictions). Basic relationships, such as inheritance and association can be modeled. 
Axioms (i.e., additional constraints) can be represented in the Object Constraint Language (OCL). 
 
This idea is not new. The close similarity of DAML and UML has been established by Cranefield 
and co-workers (Cranefield 2001a,  2001b). For example, both DAML and UML have a notion of 
a class which can have instances. The DAML notion of a subClassOf is essentially the same as the 



 

  

UML notion of specialization/generalization. Thus, UML qualifies as a visual representation for 
ontologies (Baclawski 2001). Moreover, tools are starting to emerge for the automated 
transformation of ontologies to UML. See, for example, descriptions of the tool DUET in Kogut et 
al. (Kogut 2002). 
 
Meta Model for the P ropos ed A pproach 
 
Meta Models and Meta-Meta Models. Most engineers think of UML as simply a diagramming 
notation for the high-level, albeit informal, specification of system structure and behavior. UML 
is, in fact, based on well-defined language concepts specified in terms of meta-models and 
meta-meta-models. Diagrams are one representation of the UML language concepts. An 
equivalent XML representation also exists. 
 
A meta-model describes information about models. Meta-meta-models describe information about 
meta-models.  
 
Figure 4 shows the pathway from meta-meta-models to meta-models to models and 
implementation of engineering systems. Key points: 
 

1. The meta-meta-model (also known as the UML meta-model) is a model that describes the 
UML language -- specifically, it describes classes, attributes, associations, packages, 
collaborations, use cases, actors, messages, states, and all the other concepts in the UML 
language. 

 
2. UML-like diagrams express concepts and relationships among concepts suitable for 

creating a design. These diagrams serve as a meta-model for the development of 
potentially acceptable designs.  

 
3. The UML diagrams themselves are created from diagram éléments having well-defined 

semantic meaning. The set of diagram elements (e.g., notations for inheritance, 
aggregation, and so forth) form a meta-meta model. 

 
4. Requirements are satisfied by applying a concept expressed in the meta-model. The 

activation of a concept results in an object in the design model. The latter is shown on the 
bottom right-hand side of Figure 5. 

 
 
A meta-model is a precise definition of the constructs and rules needed for creating semantic 
models. Models are the first level of abstraction from "systems of interest" to the modeler. 
Meta-models are the second level of abstraction – the items of interest at this level are the 
elements, rules and meaning of the modeling constructs themselves. Meta-meta-models define a 
language in which meta-models may be expressed. 
 



  

 
 

 
Figure 4. Pathway from Meta-meta-models to Engineering Models and Systems (Source, 

Wie, 1998) 
 
 

 
 

Figure 5. Meta-Model for the Proposed Approach 



 

  

S oftware A rchitecture Des ign 

Software architecture design is concerned with the sélection and configuration of major software 
components and their connectivity. For this context, connectivity means : (1)  linking of 
requirements to UML classes (i.e., the ontology), and (2) linking of UML classes to objects in the 
engineering model. As illustrated in Figure 6, we expect that software implémentations will 
operate as a network of loosely coupled systems, connected only by traceability mechanisms and 
interfaces for communication of évents and required data for évaluation of design rules. 
 

 
 

Figure 6. Overview of System Architecture 
 

The software architecture for the prototype implementation makes exclusive use of two 
technologies: (1) the JavaBeans framework for establishing graphs of listener-driven events using 
the DEM; and (2) the Violet UML Editor graphical user interface framework. 
 
Graphical User Interface Design. Figure 7 shows the layout of windows in the prototype 
software implémentation and mechanisms for storage of requirements, ontologies and engineering 
models in an XML data format. The graphical user interface is a composition of three panels, a 
requirements panel containing the table of requirements, a UML diagram panel for the application 
ontology, and an engineering model panel containing the model of the system. The panel assembly 
implements the notion of a reactive design environment, where users can query the system to 
establish relationships among the requirements, ontologies and physical design entitites. 
 
Delegation Event Model. Traceability connectivity and communication mechanims are handled 
by the Java Delegation Event Model (DEM). The DEM is based on the Publish-Subscribe design 
pattern. The main objectives of Publish-Subscribe are to provide a method of signaling from a 
publisher to subscribers and to provide a method to dynamically register and deregister subscribers 
with a publisher. Publishers generate and send events, and subscribers register or subscribe to 
those events from the publishers. When a publisher sends out or publishes an event, all subscribers 
interested in that event are notified. The DEM refers to publishers as event sources and subscribers 
as event listeners (Larman 1999). 
 
 



  

 
 

Figure 7. Graphical User Interface Layout and Connection to XML Persistent Storage 
 
 

Ontology-to-Engineering Model Connectivity. Standard implementations of computational 
support for UML diagramming have the goal of providing end-users with the ability to easily 
create static diagrams. Here, in contrast, UML classes and class diagrams serve the dual role of:  
(1) representing domain ontologies and (2) enabling linkages between requirements and 
engineering objects. Computational support has the goal of providing executable services for 
design traceability and design rule checking. 

Figures 8 and 9 show the step-by-step procedure for development, implementation and operation 
of ontology-enabled traceability in a design specification setting. The implementation needs to 
support: (1) Definition of relationships (e.g., one-to-one, one-to-many, etc.). (2) Management of 
relationships (e.g., create, trace, and remove) and (3) Inquiry for availability of services. Looking 
forward (see Figure 8), each specification class will store tables of references to objects in the 
physical design. Looking backward (not shown), these references will be connected to one or more 
design requirements. Figure 9 shows the pathway of development for the processing of user events 
and design rule checking. The main point to note is that the ontology is not just a pictorial 
representation; rather it becomes an ontology processing machine that accepts registration of 
requirements and design object interest in events, and supports design rule checking. A full-scale 
implementation would also show dependencies among ontologies – the exact details on how this 
should work (perhaps with three-dimensional graphics) are currently being worked out. 

 



 

  

 
 

Figure 8. Connectivity Between the Ontology and Physical Models 
 

 

 
 

Figure 9. Step-by-step Implementation of Ontology Processing Machine 
 



  

A pplication :  Was hington DC  Metro S ys tem 
This section presents our first prototype application of ontology-enabled traceability. The 
Washington DC Metro System is the second largest rail transit system in the United States. It 
serves a population of 3.5 million people with more than 200 million passenger rides per year. As 
of 2006, there were 86 metro stations in service and 106.3 miles of track.  
 
Requirements-Ontology-Engineering Software Prototype. Figure 10 is a screendump of the 
Washington DC Metro System Requirements-Ontology-Engineering Model interface.  
 

 
 

Figure 10. Screendump of the Washington DC Metro System 
 
The software prototype has a user interface and XML input/output consistent with the 
spécifications of Figure 7.  Component connectivity relationships are modeled with graph data 
structures. Metro station and group objects are identified by their name. A symbol table is 
employed for fast storage and retrieval of named objects. XML import/export is handled by JAXP, 
the java interface for XML processing with DOM parsers. 
 
The métro system design is modeled with only five requirements : (1) The first and last métro 
stations of a line shall have parking, (2) All lines shall have no less than ten métro stations, (3) All 
métro stations with parking shall have security, (4) All métro stations that do not have parking 
shall be on a bus route, and (5) All connecting stations shall have security. Requirements 1 and 3 
through 5 are satisfied by apply concepts in the MetroStation class. Requirement 2 is satisfied by 
apply concepts in the Track class/ontology. 
 



 

  

The top left-hand panel shows the métro system ontology represented in a UML class diagram 
format. The ontology diagram serves two perspectives. From a mathematical standpoint, the 
transportation network is simply as a graph of nodes connected by edges. A node can be 
characterized by its name and geographical position. Well known algorithms exist for questions of 
reachability and routing. A transportation viewpoint builds upon the mathematical viewpoint by 
adding attributes and conveniences suitable for transportation engineering. Métro stations are 
modeled as graph nodes plus information on parking and security. Notions of a transportation track 
correspond to edges in the graph. To simplify and facilitate navigation, groups of tracks are 
organized into color-coded line abstractions (e.g., riders talk about catching a green line train to the 
College Park Metro Station, but in reality neither the trains nor track are actually painted green).  
 
Listener-Driven Event Model for Requirements Traceability.  The requirements, ontology, 
and engineering entities are connected and communicate through the use of a listener-driven event 
model. Individual requirements register with the UML classes containing the concepts relevant to 
their eventual satisfaction. Then, in turn, individual UML class nodes register with individual and 
groups of design objects that a ultimately responsible for implementing a requirement. Pathways 
of traceability also begin with objects in the engineering model and work their way back to 
individual (or groups) of requirements. The result is a mixture of one-to-many and many-to-many 
relationships in a graph of bi-direxctional traceability relations. 
 
User Interaction with the Requirements Panel. When single-clicking on a requirement, the 
classes that are affected by that requirement are notified of the event. The classes in the UML 
diagram are highlighted and the items in the engineering drawing are highlighted, because they are 
registered to listen to the single-click évent from the requirement. Double clicking a requirement 
triggers the verificatio of that requirement against the engineering model. For example, the first 
requirement (end of line métro stations shall have parking) can be checked by simply double 
clicking on the requirement. Two things happen. First, a smal popup window will indicate whether 
or not the requirement has been violated. And second, all of the associated ontology components 
and physical design objects that are part of the rule checking procèss will be highlighted.  
 
User Interaction with the UML and Engineering Model Panels. When mousing-over a UML 
class node, the engineering drawing objects and requirements that are registered to listen to that 
event are notified. The objects in the engineering drawing are highlighted and all requirements that 
affect the class are highlighted because they are registered to listen to the mouse-over event from 
the class node. For example, when the cursor is positioned over the Metrostation class node, all of 
the Metro station nodes in the engineering drawing are highlighted, as are all of the requirements 
that depend on class Metro Station for their satisfaction. Similar behavior occurs when the cursor 
is positioned over an object in the engineering model/drawing. 
 

C onclus ions  and F uture Work 
 

Conclusions. This project is motivated by our belief that the likelihood of serious system failures 
can be mitigated with traceability modeling that supports validation  and/or vérification 
procedures early in the development lifecycle. Traceability models need to link together multiple 



  

models of visualization. The key contribution of this work is preliminary evaluation of a new type 
of traceability link, where design concepts are inserted between the already connected 
requirements and engineering objects. Traceability relationships between requirements, design 
concepts and engineering objects may be arbitrarily complex, possibly forming a very large graph 
structure. Procedures for establishing these links and responding to external user events need to be 
efficient and scalable. Here we have shown that UML class diagrams and listener-event models 
provide a suitable framework  for creating a variety of traceability relationships (e.g., one-to-one, 
one-to-many, etc)  A key benefit in this new type of traceability link is that rule checking 
procedures may be embedded into design concept nodes. Since individual design concept nodes 
are part of a larger ontology, rule checking procedures should apply across all projects where the 
ontology is applicable. Of course, the details of rule evaluation may differ from one technology to 
the next. 

Future Work.  Our ontology-enabled traceability model is now being extended in two directions. 
We are adding timetable-driven train behavior to the Washington DC Metro system model. This 
extension opens the possibility of traceability connections between functional/performance 
requirements and individual states of finité-state machine behavior. The small table of 
requirements will be replaced by PaladinRM, an interactive java-based tool for working with large 
graphs of engineering requirements (Austin et al. 2006a). In the second direction of work, we are 
investigating the feasibility of replacing UML diagrams with the Web Ontology Language (OWL) 
and reasoning procédures driven by the Semantic Web Rule Language (SWRL). 
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