

Ontology-Enabled Traceability Mechanisms

Mark Austin
Institute for Systems Research,
University of Maryland,
College Park, MD 20742.
E-mail: austin@isr.umd.edu

Cari E. Wojcik,
Civil Security and Response Programs,
Raytheon Integrated Defense Systems,
Portsmouth, RI 02871.
E-mail: cari_e_wojcik@raytheon.com

Copyright © 2010 by Mark Austin and Cari Wojcik. Published and used by INCOSE with permission.

Abstract. This paper describes new models and mechanisms for ontology-enabled traceability
where design concepts are inserted between the already connected requirements and engineering
objects Looking ahead, we envision that ontology-enabled traceability will play an important role
in the development of network-enabled platforms for analysis, design, and early validation and
verification of information-age engineering systems.

P roblem S tatement

The post-event analysis of recent engineering system failures indicates that, often, the underlying
cause of catastrophic and expensive failures is minor mistakes or omission in communication of
design intent (e.g., errors in the use of engineering units; errors in the placement of electronic
devices on a drawing; logic errors in the implementation of software). The importance of this
problem stems from the wide array of engineering applications that have failed in this way.
Examples include spacecraft, automated baggage handling systems at airports, and networked
services in modern building environments (Jackson 2006; Jones 2004; Sawyer 1999).

The difficulty in finding a good solution to this problem is complicated by industrial-age systems
being replaced by information-age systems. As pointed out by Whitney (Whitney 1996),
industrial-age systems tend to be dominated by hardware and continuous behavior that can be
described by differential equations. Designers can use safety factors to deal with uncertainties in
system properties, behavior and design. Information-age systems on the other hand tend to be
dominated by combinations of hardware, software and communications, which together are
required to provide new types of time-critical services, superior levels of performance, and work
correctly with no errors. There are a number of reasons why satisfaction of these goals can be
particularly difficult. First, when new technologies are weaved together to achieve new types of
functionality, systems can fail in new and unprecedented ways. In the late 1990s, for example,
NASA certainly did not anticipate that a miscommunication of engineering units would lead to one
of their spacecraft crashing into the surface of Mars. Second, correct functionality for software and
communications systems is defined by logic (not differential equations). Not only does the concept
of safety factors not apply, as observed in a number of engineering system failures, a small fault in
the software implementation can trigger catastrophic system level failures. While it is tempting to
assume these errors are caused by bugs in the software, recent studies (Jackson 2006) indicate that

almost all grave software problems can be traced back to conceptual mistakes made before the
programming even started.

Systems Engineering Community Response. In an effort to improve the accuracy and
effectiveness of communication among engineers in the development of real-time systems, the
systems engineering community has developed SysML, the Unified Modeling Language (UML)
extended for Systems Engineers (Sysml 2003, UML 2003). UML has already found great success
in the software engineering community. By introducing a variety of new diagram types to SysML,
the hope is that similar success will occur in systems engineering. We believe, however, the name
Unified Modeling Language promises more than it can ever deliver. While modest extensions to
UML will be useful for documentation, informal analysis, and communication of ideas among
systems engineers, both UML and SysML lack the syntax/semantics needed for rigorous analysis
and formal verification of system compliance associated with temporal and spatial analysis of
physical systems. While diagrams may represent different views on a system, there is no
mechanism to define the interconnections or dependencies among the diagrams describing a
system. In other words, there are too many places to capture information (in the large number of
available diagrams), and too few ways to show relationships between the diagrams (Berkenkotter
2003). Moreover, recent history tells us that the benefits of UML are unlikely to be appreciated by
upper-level management and discipline-specific engineers -- instead, issues need to be explained
in terms with which they are already familiar (Fogarty and Austin 2009).

These gaps will not be bridged unless a method is found to use UML (and its extensions) in concert
with discipline-specific models and notations (e.g., visualization of requirements; block diagrams;
two- and three-dimensional engineering schematics). Therefore, the key tenet of the proposed
work is that end-to-end development of engineering systems will occur through multiple
models of visualization networked together. Looking ahead, there will still be a need for
development of web-centric, graphically driven, computational platforms dedicated to
system-level planning, analysis, design and verification of complex multidisciplinary engineering
systems. These environments will employ semantic descriptions of application domains, and use
ontologies to enable validation of problem domains and communication (or mappings) among
multiple disciplines. The abstraction of multiple disciplines to properly annotated information
representations and reuse of previous work at all levels of development will be essential.
Present-day systems engineering methodologies and tools are not designed to handle projects in
this way.

S tate-of-the-A rt R equirements Modeling

At the system level, designs are viewed as collections (e.g., networks and hiérarchies) of large,
arbitrarily complex functional units that form the major components of a system. Designers need
to identify components/objects, their attributes and methods, and interfaces and relationships to
external entities. To maximize the quality of connunication in team-based development of
projects, participants should be able to view design data/information in a manner with which they
are familiar, and easily understand connectivity relations and transitions among viewpoints, and
the rationale for establishing the connections in the first place. Unfortunately, state-of-the-art
capability in requirements modeling and visualization fall short of this vision.

Figure 1. Modeling Transitional Mappings Across Hierarchies in SLATE

As a case in point, the IBM Teamcenter (SLATE) Requirements Tool is based upon very good
data representations for traceability links (complying and defining links), and connecting
cause-and-effect relationships among abstraction blocks (ABs) in multiple viewpoints (i.e.,
TRAMS == translational mappings). TRAMs work in terms of connecting source ABs to
destination ABs, and source-to-destination and destination-to-source pathways. Figure 1 shows,
for example, the use of TRAMs to link requirements, electrical, mechanical and software
viewpoints. The underlying graphical support is weak in the sense that all design entities are
simply referred to as abstraction blocks (ABs). Moreover, to date, no one has been able to figure
out how to actually organize and visualize the subsystem viewpoints on a computer as illustrated
in Figure 1. This leaves a non-systems engineer in the dark, providing little visual assistance in
understanding how requirements influence design objects that they actually understand, and in
understanding how elements in one domain of engineering are affected by concerns in a different
engineering domain. To overcome these limitations we need a better representation of individual
objects (requirements, abstraction blocks, and so forth) and the linkage of those entities to the
overall architectural design.

Proposed Approach to Traceability
The upper half of Figure 2 shows a simplified representation for how requirements are connected
to design elements in state-of-the-art traceability (i.e., traceability links connect requirements
directly to design objects). State-of-the-art traceability mechanisms portray that ``this requirement
is satisfied by that design object (or group of design objects)’’. Or alternatively, looking
backwards, ``this design object is here because it will satisfy that design requirement.’’

Figure 2. Simplified View of State-of-the-Art Traceability and the Proposed Model

The lower half of Figure 2 shows the proposed model that will be explored in this work. Instead of
directly connecting requirements directly to design objects, a new node called ``Design Concept''
will be embedded in the traceability link. Assembly of traceability links will be conducted by
asking ``what concept should be applied to satisfy this requirement?'' Solutions to this question
establish links between requirements and design concepts. We assume that the design itself will
correspond to the application of appropriate concepts. Thus, the links between design concepts and
engineering objects represents an actual implementation of concepts.

From a validation and verification viewpoint, the key advantage of the proposed model is that
software for ``design rule checking'' can be embedded inside the design concepts module. Thus,
rather than waiting until the design has been fully specified, this model has the potential for
detecting rule violations at the earliest possible moment. Moreover, if mechanisms can be created
to dynamically load design concept modules into computer-based design environments, then rule
checking can proceed even if the designer is not an expert in a particular domain.

From a modeling and visualization standpoint, this approach opens the door to improved methods
for the visualization of requirements with respect to design objects. In an ideal setting, the latter
should be visualized using a notation familiar to the engineer (e.g., a mechanical engineering
drawing).

Ontologies and Ontology-E nabled C omputing

An ontology is a set of knowledge terms, including the vocabulary, the semantic interconnections,
and some simple rules of inference and logic for some particular topic ((Gomez-Perez 2004,
Hendler 2001, Staab 2000). Ontologies are needed to facilitate communication among people,
among machines, and between humans and machines. Instead of creating a system through the
integration of data, the proposed approach follows an approach of creating systems through the
application and integration of concepts.

System and sub-system evaluation will depend on both the concept and the data used in its
implementation (e.g., an area constraint will depend on geometry). To ensure that system-level
designs are faithful representations of both the stakeholder needs and the capabilities of the
participating application domain(s), ontology models need to be accurate, complete, conflict free

and minimal (i.e., no redundancy) (Shanks 2003). Accuracy means that models need to accurately
represent the semantics of the participating application domains, as perceived by the project
stakeholders. To reduce the likelihood of conflicts during model updates, models should not
contain redundant semantics. The ontology community makes a distinction between ontologies
that are taxonomies and those that model domains in depth, applying restrictions on domain
semantics (Gomez-Perez 2004). So-called lightweight ontologies include concepts, concept
taxonomies, relationships between concepts, and properties of the concepts. Heavyweight
ontologies add axioms to lightweight ontologies -- axioms serve the purpose of adding clarity to
the meaning of terms in the ontology. They can be modeled with first-order logic. Top-level
ontologies describe general concepts (e.g., space, connectivity, etc.). Domain ontologies describe
a vocabulary related to a particular domain (e.g., building architecture, plumbing, etc.). Task
ontologies describe a task or activity. Application ontologies describe concepts that depend on
both a specific domain and task. These ontologies might represent user needs with respect to a
specific application. Because a unified theory for system validation does not exist at this time,
present-day procedures for design rule checking tend to focus on small snippets of the system
model functionality, and are achieved in several ways: (1) consistency checking, (2) connectivity
analysis, and (3) model analysis on a global basis, based upon graph-theoretic techniques.

Ontology-Enabled Computing. To provide for a formal conceptualization within a particular
domain, and for computers to share, exchange, and translate information within a domain of
discourse, an ontology needs to accomplish three things (Liang 2004): (1) Provide a semantic
representation of each entity and its relationships to other entities; (2) Provide constraints and rules
that permit reasoning within the ontology; and (3) Describe behavior associated with stated or
inferred facts. Items 1 and 2 cover the concepts and relations that are essential to describing a
problem domain. Items 2 and 3 cover the axioms that are often associated with an ontology.
Usually, axioms will be encoded in some form of first-order logic.

Semantic Web. This project assumes that advances in ontology-enabled design and development
will occur in parallel with advances in the Semantic Web.

In his original vision for the World Wide Web, Tim Berners-Lee described two key objectives: (1)
To make the Web a collaborative medium; and (2) To make the Web understandable and, thus,
processable by machines. During the past decade the first part of this vision has come to pass --
today's Web provides a medium for presentation of data/content to humans. Machines are used
primarily to retrieve and render information. Humans are expected to interpret and understand the
meaning of the content.

The Semantic Web (Berners-Lee 2001, Hendler 2001) aims to give information a well-defined
meaning, thereby creating a pathway for machine-to-machine communication and automated
services based on descriptions of semantics (Geroimenko 2003). Realization of this goal will
require mechanisms (i.e., markup languages) that will enable the introduction, coordination, and
sharing of the formal semantics of data, as well as an ability to reason and draw conclusions (i.e.,
inference) from semantic data obtained by following hyperlinks to definitions of problem domains
(i.e., so-called ontologies).

Figure 3. Technologies in the Sematic Web Layer Cake

Figure 3 describes the infrastructure that will support this vision (Berners-Lee 2000). The
Resource Description Framework (RDF) defines a standard for describing the relationships
between objects and classes in a general but simple way. Class relationships and statements about
a problem domain are expressed in DAML+OIL (DARPA Agent Markup Language) and more
recently, the Web Ontology Language (OWL) (Webont 2003).

Representation of Ontologies with UML Class Diagrams. From a systems engineering
perspective, the key advantage in modeling design concepts with Semantic Web languages such as
RDF, DAML and OWL is that software tools have been developed for logical reasoning with
relationships and rules implied by ontologies, and for evaluation of assertions. See Figure 5.
Unfortunately, at this time RDF, DAML and OWL lack a standard representation for visualizing
concepts expressed in these languages.

A practical way of overcoming this shortcoming is to use UML class diagrams -- actually, graph
structures of UML schema -- in lieu of a formal ontology. UML is well defined and has a
community of millions of users. UML class diagrams can be used for representing concepts (and
their attributes), and relations between concepts (e.g., knowledge reflecting performance, legal and
economic restrictions). Basic relationships, such as inheritance and association can be modeled.
Axioms (i.e., additional constraints) can be represented in the Object Constraint Language (OCL).

This idea is not new. The close similarity of DAML and UML has been established by Cranefield
and co-workers (Cranefield 2001a, 2001b). For example, both DAML and UML have a notion of
a class which can have instances. The DAML notion of a subClassOf is essentially the same as the

UML notion of specialization/generalization. Thus, UML qualifies as a visual representation for
ontologies (Baclawski 2001). Moreover, tools are starting to emerge for the automated
transformation of ontologies to UML. See, for example, descriptions of the tool DUET in Kogut et
al. (Kogut 2002).

Meta Model for the P ropos ed A pproach

Meta Models and Meta-Meta Models. Most engineers think of UML as simply a diagramming
notation for the high-level, albeit informal, specification of system structure and behavior. UML
is, in fact, based on well-defined language concepts specified in terms of meta-models and
meta-meta-models. Diagrams are one representation of the UML language concepts. An
equivalent XML representation also exists.

A meta-model describes information about models. Meta-meta-models describe information about
meta-models.

Figure 4 shows the pathway from meta-meta-models to meta-models to models and
implementation of engineering systems. Key points:

1. The meta-meta-model (also known as the UML meta-model) is a model that describes the
UML language -- specifically, it describes classes, attributes, associations, packages,
collaborations, use cases, actors, messages, states, and all the other concepts in the UML
language.

2. UML-like diagrams express concepts and relationships among concepts suitable for

creating a design. These diagrams serve as a meta-model for the development of
potentially acceptable designs.

3. The UML diagrams themselves are created from diagram éléments having well-defined

semantic meaning. The set of diagram elements (e.g., notations for inheritance,
aggregation, and so forth) form a meta-meta model.

4. Requirements are satisfied by applying a concept expressed in the meta-model. The

activation of a concept results in an object in the design model. The latter is shown on the
bottom right-hand side of Figure 5.

A meta-model is a precise definition of the constructs and rules needed for creating semantic
models. Models are the first level of abstraction from "systems of interest" to the modeler.
Meta-models are the second level of abstraction – the items of interest at this level are the
elements, rules and meaning of the modeling constructs themselves. Meta-meta-models define a
language in which meta-models may be expressed.

Figure 4. Pathway from Meta-meta-models to Engineering Models and Systems (Source,

Wie, 1998)

Figure 5. Meta-Model for the Proposed Approach

S oftware A rchitecture Des ign

Software architecture design is concerned with the sélection and configuration of major software
components and their connectivity. For this context, connectivity means : (1) linking of
requirements to UML classes (i.e., the ontology), and (2) linking of UML classes to objects in the
engineering model. As illustrated in Figure 6, we expect that software implémentations will
operate as a network of loosely coupled systems, connected only by traceability mechanisms and
interfaces for communication of évents and required data for évaluation of design rules.

Figure 6. Overview of System Architecture

The software architecture for the prototype implementation makes exclusive use of two
technologies: (1) the JavaBeans framework for establishing graphs of listener-driven events using
the DEM; and (2) the Violet UML Editor graphical user interface framework.

Graphical User Interface Design. Figure 7 shows the layout of windows in the prototype
software implémentation and mechanisms for storage of requirements, ontologies and engineering
models in an XML data format. The graphical user interface is a composition of three panels, a
requirements panel containing the table of requirements, a UML diagram panel for the application
ontology, and an engineering model panel containing the model of the system. The panel assembly
implements the notion of a reactive design environment, where users can query the system to
establish relationships among the requirements, ontologies and physical design entitites.

Delegation Event Model. Traceability connectivity and communication mechanims are handled
by the Java Delegation Event Model (DEM). The DEM is based on the Publish-Subscribe design
pattern. The main objectives of Publish-Subscribe are to provide a method of signaling from a
publisher to subscribers and to provide a method to dynamically register and deregister subscribers
with a publisher. Publishers generate and send events, and subscribers register or subscribe to
those events from the publishers. When a publisher sends out or publishes an event, all subscribers
interested in that event are notified. The DEM refers to publishers as event sources and subscribers
as event listeners (Larman 1999).

Figure 7. Graphical User Interface Layout and Connection to XML Persistent Storage

Ontology-to-Engineering Model Connectivity. Standard implementations of computational
support for UML diagramming have the goal of providing end-users with the ability to easily
create static diagrams. Here, in contrast, UML classes and class diagrams serve the dual role of:
(1) representing domain ontologies and (2) enabling linkages between requirements and
engineering objects. Computational support has the goal of providing executable services for
design traceability and design rule checking.

Figures 8 and 9 show the step-by-step procedure for development, implementation and operation
of ontology-enabled traceability in a design specification setting. The implementation needs to
support: (1) Definition of relationships (e.g., one-to-one, one-to-many, etc.). (2) Management of
relationships (e.g., create, trace, and remove) and (3) Inquiry for availability of services. Looking
forward (see Figure 8), each specification class will store tables of references to objects in the
physical design. Looking backward (not shown), these references will be connected to one or more
design requirements. Figure 9 shows the pathway of development for the processing of user events
and design rule checking. The main point to note is that the ontology is not just a pictorial
representation; rather it becomes an ontology processing machine that accepts registration of
requirements and design object interest in events, and supports design rule checking. A full-scale
implementation would also show dependencies among ontologies – the exact details on how this
should work (perhaps with three-dimensional graphics) are currently being worked out.

Figure 8. Connectivity Between the Ontology and Physical Models

Figure 9. Step-by-step Implementation of Ontology Processing Machine

A pplication : Was hington DC Metro S ys tem
This section presents our first prototype application of ontology-enabled traceability. The
Washington DC Metro System is the second largest rail transit system in the United States. It
serves a population of 3.5 million people with more than 200 million passenger rides per year. As
of 2006, there were 86 metro stations in service and 106.3 miles of track.

Requirements-Ontology-Engineering Software Prototype. Figure 10 is a screendump of the
Washington DC Metro System Requirements-Ontology-Engineering Model interface.

Figure 10. Screendump of the Washington DC Metro System

The software prototype has a user interface and XML input/output consistent with the
spécifications of Figure 7. Component connectivity relationships are modeled with graph data
structures. Metro station and group objects are identified by their name. A symbol table is
employed for fast storage and retrieval of named objects. XML import/export is handled by JAXP,
the java interface for XML processing with DOM parsers.

The métro system design is modeled with only five requirements : (1) The first and last métro
stations of a line shall have parking, (2) All lines shall have no less than ten métro stations, (3) All
métro stations with parking shall have security, (4) All métro stations that do not have parking
shall be on a bus route, and (5) All connecting stations shall have security. Requirements 1 and 3
through 5 are satisfied by apply concepts in the MetroStation class. Requirement 2 is satisfied by
apply concepts in the Track class/ontology.

The top left-hand panel shows the métro system ontology represented in a UML class diagram
format. The ontology diagram serves two perspectives. From a mathematical standpoint, the
transportation network is simply as a graph of nodes connected by edges. A node can be
characterized by its name and geographical position. Well known algorithms exist for questions of
reachability and routing. A transportation viewpoint builds upon the mathematical viewpoint by
adding attributes and conveniences suitable for transportation engineering. Métro stations are
modeled as graph nodes plus information on parking and security. Notions of a transportation track
correspond to edges in the graph. To simplify and facilitate navigation, groups of tracks are
organized into color-coded line abstractions (e.g., riders talk about catching a green line train to the
College Park Metro Station, but in reality neither the trains nor track are actually painted green).

Listener-Driven Event Model for Requirements Traceability. The requirements, ontology,
and engineering entities are connected and communicate through the use of a listener-driven event
model. Individual requirements register with the UML classes containing the concepts relevant to
their eventual satisfaction. Then, in turn, individual UML class nodes register with individual and
groups of design objects that a ultimately responsible for implementing a requirement. Pathways
of traceability also begin with objects in the engineering model and work their way back to
individual (or groups) of requirements. The result is a mixture of one-to-many and many-to-many
relationships in a graph of bi-direxctional traceability relations.

User Interaction with the Requirements Panel. When single-clicking on a requirement, the
classes that are affected by that requirement are notified of the event. The classes in the UML
diagram are highlighted and the items in the engineering drawing are highlighted, because they are
registered to listen to the single-click évent from the requirement. Double clicking a requirement
triggers the verificatio of that requirement against the engineering model. For example, the first
requirement (end of line métro stations shall have parking) can be checked by simply double
clicking on the requirement. Two things happen. First, a smal popup window will indicate whether
or not the requirement has been violated. And second, all of the associated ontology components
and physical design objects that are part of the rule checking procèss will be highlighted.

User Interaction with the UML and Engineering Model Panels. When mousing-over a UML
class node, the engineering drawing objects and requirements that are registered to listen to that
event are notified. The objects in the engineering drawing are highlighted and all requirements that
affect the class are highlighted because they are registered to listen to the mouse-over event from
the class node. For example, when the cursor is positioned over the Metrostation class node, all of
the Metro station nodes in the engineering drawing are highlighted, as are all of the requirements
that depend on class Metro Station for their satisfaction. Similar behavior occurs when the cursor
is positioned over an object in the engineering model/drawing.

C onclus ions and F uture Work

Conclusions. This project is motivated by our belief that the likelihood of serious system failures
can be mitigated with traceability modeling that supports validation and/or vérification
procedures early in the development lifecycle. Traceability models need to link together multiple

models of visualization. The key contribution of this work is preliminary evaluation of a new type
of traceability link, where design concepts are inserted between the already connected
requirements and engineering objects. Traceability relationships between requirements, design
concepts and engineering objects may be arbitrarily complex, possibly forming a very large graph
structure. Procedures for establishing these links and responding to external user events need to be
efficient and scalable. Here we have shown that UML class diagrams and listener-event models
provide a suitable framework for creating a variety of traceability relationships (e.g., one-to-one,
one-to-many, etc) A key benefit in this new type of traceability link is that rule checking
procedures may be embedded into design concept nodes. Since individual design concept nodes
are part of a larger ontology, rule checking procedures should apply across all projects where the
ontology is applicable. Of course, the details of rule evaluation may differ from one technology to
the next.

Future Work. Our ontology-enabled traceability model is now being extended in two directions.
We are adding timetable-driven train behavior to the Washington DC Metro system model. This
extension opens the possibility of traceability connections between functional/performance
requirements and individual states of finité-state machine behavior. The small table of
requirements will be replaced by PaladinRM, an interactive java-based tool for working with large
graphs of engineering requirements (Austin et al. 2006a). In the second direction of work, we are
investigating the feasibility of replacing UML diagrams with the Web Ontology Language (OWL)
and reasoning procédures driven by the Semantic Web Rule Language (SWRL).

R eferences

Austin M., Mayank V., and Shmunis N. 2006a. PaladinRM: Graph-based Visualization of
Connectivity Relationships Organized for Team-Based Design, Systems Engineering, Vol. 9, No.
2, pp. 129-145, May.

———. 2006b. Ontology-Based Validation of Connectivity Relationships in a Home Theatre
System, International Journal of Intelligent Systems, Vol 21., No. 10, pp. 1111-1125, October.

Baclawski K., Kokar M.K., Kogut P., Hart L., Smith J., Holmes W., Letkowski J., and Aronson
M.L. 2001. Extending UML to Support Ontology Engineering for the Semantic Web, UML 2001.

Berners-Lee T., Hendler J., and Lassa O., 2001. The Semantic Web, Scientific American, pp.
35-43.

Cranfield S. 2001. Networked Knowledge and Representation and Exchange using UML and
RDF, Journal of Digital Information, Vol. 1, No. 8.

———. 2001. UML and the Semantic Web, In the Proceedings of the International Semantic Web
Working Symposium, Palo Alto, CA.

Faison T., 2006. Event-Based Programming: Taking Events to the Limit, Apress, New York.

Fogarty K., Austin M. 2009. Systems Engineering and Traceability Applications of the Higraph
Formalism, Systems Engineering, Vol. 12, No. 2, pp. 117-140.

Gomez-Perez. A., Fernandez-Lopez. M., and Corcho O. 2004. Ontological Engineering, Springer.

Hendler J. 2001., Agents and the Semantic Web, IEEE Intelligent Systems, March/April, pp.

30-37.

Horstmann C. 2006., Object-Oriented Design and Patterns: Second Edition, John-Wiley and Sons,
New York. Note: see, in particular, pages 334-352.

Jackson, D. 2006. Dependable Software by Design, Scientific American, Vol. 294, No. 6.

Jones N., 2004. Flawed Drawings caused Spacecraft Crash: Upside-Down Switches Stopped
Parachutes from Opening, Source: news@nature.com.

Kogut P., Cranefield S., Hart I., et al. 2001, UML for Ontology Development, The Knowledge
Engineering Review, Vol. 17, No. 1.

Liang V.C., Paredis C.J.J. 2004. A Port Ontology for Conceptual Design of Systems, Transactions
of the ASME, Vol. 4, September.

Sawyer K., 1999. Engineers’ lapse leads to loss of Mars Spacecraft: Lockheed didn’t tally Metric
Units, Washington Post.
Shanks G., Tansley E., Weber R. 2003. Using Ontology to Validate Conceptual Models,
Communications of the ACM, Vol. 46, No. 10., pp. 85-89.

Staab S., Maedche A. 2000. Ontology Engineering beyond the Modeling of Concepts and
Relations, In Benjamins R.V., Gomez-Perez A., Uschold M., editors. Proceedings of the 14th

Unified Modeling Language (UML), 2003. See

European Conference on Artificial Intelligence, Workshop on Applications of Ontologies and
Problem Solving Methods.

http://www.omg.org/uml.

Web Ontology Language (OWL), 2003. See http://www.w3.org/TR/owl-ref/

Whitney D.E. 1996. Why Mechanical Design cannot be like VLSI Design, Research in
Engineering Design, Vol. 8, pp. 125-138.

Biographies

Mark Austin is an Associate Professor of Civil and Environmental Engineering at the University
of Maryland, College Park, with a joint appointment in the Institute for Systems Research (ISR).
Mark is Director of the Master of Science in Systems Enginering (MSSE) Program at ISR. Mark
has a Bachelor of Civil Engineering (First Class Honors) from the University of Canterbury,
Christchurch, New Zealand, and M.S. and Ph.D. degrees in Structural Engineering from the
University of California, Berkeley.

Cari Wojcik is a Systems Engineer in the Civil Security and Response Program, Raytheon
Integrated Defense Systems, Portsmouth, Rhode Island. She has a MBA from the University of
Rhode Island (2009), a Masters of Systems Engineering from the University of Maryland (2006),
and an undergraduate degree in Computer Engineering from Virginia Tech (2004).

mailto:news@nature.com�
http://www.omg.org/uml�
http://www.w3.org/TR/owl-ref/�

	Ontology-Enabled Traceability Mechanisms
	Problem Statement
	State-of-the-Art Requirements Modeling
	Figure 1. Modeling Transitional Mappings Across Hierarchies in SLATE
	Figure 2. Simplified View of State-of-the-Art Traceability and the Proposed Model
	Ontologies and Ontology-Enabled Computing
	Figure 3. Technologies in the Sematic Web Layer Cake
	Figure 5. Meta-Model for the Proposed Approach
	Software Architecture Design
	Software architecture design is concerned with the sélection and configuration of major software components and their connectivity. For this context, connectivity means : (1) linking of requirements to UML classes (i.e., the ontology), and (2) linkin...
	Figure 6. Overview of System Architecture
	The software architecture for the prototype implementation makes exclusive use of two technologies: (1) the JavaBeans framework for establishing graphs of listener-driven events using the DEM; and (2) the Violet UML Editor graphical user interface fra...
	Figure 7. Graphical User Interface Layout and Connection to XML Persistent Storage
	Figure 8. Connectivity Between the Ontology and Physical Models
	Figure 9. Step-by-step Implementation of Ontology Processing Machine
	Application : Washington DC Metro System
	Figure 10. Screendump of the Washington DC Metro System
	Conclusions and Future Work
	Conclusions. This project is motivated by our belief that the likelihood of serious system failures can be mitigated with traceability modeling that supports validation and/or vérification procedures early in the development lifecycle. Traceability m...
	Future Work. Our ontology-enabled traceability model is now being extended in two directions. We are adding timetable-driven train behavior to the Washington DC Metro system model. This extension opens the possibility of traceability connections betw...
	References
	Unified Modeling Language (UML), 2003. See 3TUhttp://www.omg.org/umlU3T.
	Web Ontology Language (OWL), 2003. See 3TUhttp://www.w3.org/TR/owl-ref/U3T
	Whitney D.E. 1996. Why Mechanical Design cannot be like VLSI Design, Research in Engineering Design, Vol. 8, pp. 125-138.
	Biographies
	Mark Austin is an Associate Professor of Civil and Environmental Engineering at the University of Maryland, College Park, with a joint appointment in the Institute for Systems Research (ISR). Mark is Director of the Master of Science in Systems Engine...

	Prev:
	Next:
	Close:
	First:

